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1 Introduction

De Sitter space plays a central role in cosmology. In the standard model, the first moment
after the big bang was a period of inflation in which the universe expanded many times over
during an approximately de Sitter phase. Recent observations indicate that the expansion
is currently accelerating, indicating the presence of a dark matter component which is most
economically explained by a positive cosmological constant — in which case the future of
our universe is a de Sitter phase. Moreover, if string theory is the correct description of
nature, we may expect that our entire observable universe is a bubble expanding in an
eternally inflating false vacuum de Sitter space [1, 2]. In such a model bubbles of the
true vacuum nucleate in the false vacuum, and their walls accelerate outwards under the
gravitational pressure due to the differing values of the vacuum energy inside and out.
Observers may form inside these cosmic bubbles, which viewed from the inside appear to
be negatively curved expanding Robertson-Walker cosmologies [3]. The cosmology inside
will be affected in interesting ways both at its “Big Bang” [4] and later, by collisions with
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other bubbles (see e.g [5]). If this model is correct, understanding de Sitter space becomes
even more crucial.

But de Sitter space has proved maddeningly difficult to understand. In eternal de Sit-
ter, points at fixed comoving distance always become causally disconnected at late times.
As a result, correlation functions of points separated by more than a single Hubble length
are not observable, and so one cannot define observables (like an S-matrix or boundary cor-
relation functions in anti-de Sitter space) using well-separated points in space [6]. Moreover,
because of the thermal nature of de Sitter and its finite entropy one expects correlators of
operators inserted at timelike separated points to be quasi-periodic functions of the time
separation, which neither converge nor settle into any predictable pattern (and in fact
eventually produce fluctuations to every state consistent with the conservation laws) [7, 8].
Attempts to define a dS/CFT correspondence indicate that if such a dual theory exists,
it cannot be unitary [9, 10]. In the larger “multiverse” of the string theory landscape,
one would like to understand how to average over distributions of cosmic bubbles so as to
compute the expected values of cosmological observables visible to those living inside them.
Much interesting work has been done on this problem; see e.g [11] for a review. However,
this too has been plagued by infinities and the non-uniqueness in the choice of measure.

Here, we analyze the correlation functions of a putative dual CFT for eternal inflation.
Our philosophy is that if one can find a consistent and well-defined set of quantities in
eternally inflating spaces, this may lead to a solution of many of the problems above. To
begin, consider an eternally inflating spacetime in d + 1 spacetime dimensions in which
at least one interacting scalar field is undergoing tunneling and forming bubbles. If one
takes a d-dimensional constant time slice across the spacetime at late time, the slice will
contain many casually disconnected regions and many vacuum bubbles, as shown in fig-
ures 1 and 2. Each bubble appears initially with small size, but as time passes its radius
grows, asymptoting to a finite comoving radius determined by the conformal time at which
it appeared (late appearing bubbles are smaller).

We make some simplifying assumptions which allow us to compute the statistical
distribution of these bubbles on the d-slice. (For a more general discussion, see [13].)
This approach has the advantage of simplicity, but the disadvantage that these bubble
distributions are not observable.

Any given observer can observe only a subset of the eternally inflating spacetime.
Consider an observer inside a bubble of some type, the “observation bubble.” The obser-
vation bubble collides with other bubbles that form through quantum nucleation in the
false vacuum nearby, as shown in figure 1. Each collision bubble will affect the observation
bubble’s wall inside a ball (a disk in the case of an observer 3+1 dimensional de Sitter). As
time passes for an observer inside the observation bubble the collision appears as a point
and grows at a rate which asymptotically approaches that of the observation bubble’s wall
itself. As a result the angular radius of the disk asymptotes at late time to some finite size
ψ, which is determined in a simple way by the time of the collision (late collisions make
smaller disks). If the observer has access to large conformal times — which requires that
the cosmological constant inside the observation bubble be small — she can observe this
asymptotic distribution by, for example, its effects on her cosmic microwave background
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false vacuum dS

Minkowski bubble 

“census taker” census taker’s sky
at late time

late time global
slice

Figure 1. A Carter-Penrose conformal diagram for bubbling de Sitter space. One can slice with a
constant global time surface, which from d = 2 + 1 de Sitter would produce a 2-sphere tiled with
bubbles (see figure 2). Alternatively one can consider the sky as observed at late times by a “census
taker” living in a Λ = 0 bubble. Starting from d = 3 + 1 de Sitter, this will produce a very similar
2-sphere.

Figure 2. Artist’s rendition of a global slice of bubbling de Sitter space at late times, or a census
taker’s sky.

sky. Such an observer has been referred to as a “census taker” [12].

We will investigate the statistics of the distribution of these bubbles and their collisions,
focusing primarily on the case of 2D distributions. The distribution can be thought of as
describing either the set of bubbles on a late time slice in 2+1 dimensional de Sitter space,
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or the set of collisions with an observation bubble in 3+1 de Sitter. As we will see, using
the bubble distribution on these surfaces one can define a set of correlation functions
which behave like primary operators of a 2D conformal field theory. The operators are the
exponentials of a discrete number operator that counts the number of disks that overlap
the point where it is inserted.

Using the distribution we compute the 2–,3–, and 4-point functions of these exponential
operators analytically and exactly. These turn out to be consistent with the hypothesis
that these exponential operators are primary fields of a conformal field theory, except that
the 4-point function exhibits a non-analyticity as a function of the location of the operator
insertions. The theory is conformally invariant for arbitrary values of the dimensionless
tunneling rate γ. The relation between the charge β of the exponential of the number
operator eiβN(z) and its scaling dimension is interesting and novel:

∆ (β) = πγ(1− cosβ). (1.1)

We compute the central charge of this putative conformal field theory by evaluating its
partition function on a sphere of radius R, and find a result proportional to the continuous
parameter γ.

We also discuss higher dimensional versions of the theory. The simplest such extension
is a 3D version obtained from the statistics of bubbles on 3D global slices of 3+1 de Sitter.
This 3D theory has a dimension zero number operator, and its exponentials again behave
like primary fields with positive dimension. In fact, we can show that in any dimension d,
the theory always contains a dimension zero number operator and exponential operators
constructed from it with arbitrarily small positive weight. Since no such operator can exist
in a unitary field theory in more than d = 2, these higher dimensional theories cannot
be unitary.

Finally, we will demonstrate that in the limit that the decay rate γ →∞, the theory in
any number of dimensions becomes free: correlators of the exponential operators factorize
onto products of 2-point functions in precisely the same way as vertex operators for a free,
massless scalar in two dimensions.

2 Conformal invariance

The simplest case to consider is one in which the cosmological constant inside the bubbles
is the same as that of the “false vacuum” outside, and where bubbles can nucleate both
inside and outside other bubbles — always with the same decay rate γ, where γ is defined
as the dimensionless decay rate per unit Hubble time per unit Hubble volume.

In order for the tunneling rate to be constant, all of the vacua should be identical.
The simplest model is the potential drawn in figure 3, where the potential has a discrete
shift symmetry relating the vacua to each other. Even once the potential is symmetric,
there are in general nontrivial interactions between bubbles, such as correlations between
their nucleation points and collisions between bubbles. We work in the noninteracting limit
where the nucleation rate is constant, independent of the presence of other bubbles.
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Figure 3. A potential for a scalar field coupled to gravity that could produce bubble distributions
of the type we consider.

With these assumptions one can compute the bubble distribution on a global time
slice. The spacetime is de Sitter with metric

ds2 =
1

sin2 η

(
−dη2 + dΩ2

d

)
. (2.1)

where dΩ2
d is the metric on a d-sphere. The number of bubbles that nucleate in a conformal

time interval dη is proportional to the spacetime volume available,

dN = γdVd+1 = γ
dη

sind+1 η
dΩd (2.2)

where dVd is the d−dimensional spacetime volume element and the dΩd factor refers to the
location of the nucleation point on the spatial slice.

We want to characterize the distribution of bubbles on future infinity of de Sitter space,
which is given by η = 0 in these coordinates. A given bubble nucleation nucleation will
affect a ball on future infinity. The domain wall of a bubble asymptotically approaches the
future lightcone of the nucleation point. Light rays satisfy

dψ = dη (2.3)

where ψ is the angular radius of the lightcone. Therefore, a bubble nucleated at time η has
angular size ψ = |η| on the conformal boundary, as shown in figure 4. The distribution of
bubbles on the boundary is then

dN = γ
dψ

sind+1 ψ
dΩd . (2.4)

Previous attempts to define a theory on such slices can be found in [9, 13].
As mentioned in the introduction, we can also consider the distribution of bubbles

which collide with a given “observation bubble.” In [15] we computed this distribution:
the distribution of collision bubbles on the boundary of the future lightcone of a point in
3+1 de Sitter space (i.e., the observation bubble’s wall) after infinite time. The number
distribution takes the following simple form:

dN(ψ, θ, φ) =
4γ
3

dψ

sin3 ψ
sin θdθdφ, (2.5)
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η
ψ

Figure 4. A bubble nucleated at conformal time η covers an angular size ψ = |η| on future infinity.

where ψ ∈ (0, π) is again the angular radius of the disk, and θ and φ are the coordinates of
its center on the boundary sphere (we have set the radius of the sphere to 1 for convenience).
Notice that this distribution is identical in form to eq. 2.4 with d = 2. An attempt to define
a conformal field theory on this sphere can be found in [14]. More generally, the number
distribution of collisions on the boundary of an “observation bubble” in d+ 2 dimensional
de Sitter space is

dN = γ
Ωd+2

Ωd+1

dψ

sind+1 ψ
dΩd (2.6)

where Ωn is the surface area of a unit n-sphere.
This distribution turns out to have the remarkable property that it is invariant under

global conformal transformations SO(d+ 1, 1), which are Mobius transformations in d = 2.
The easiest way to see this is to stereographically project the distribution to the plane.
This projection maps spheres to spheres. In terms of the coordinates xi of the center of the
sphere and the sphere radius r, a little algebra shows that the distribution becomes simply

dN = γ
dr

rd+1
ddx, (2.7)

where xi are the Cartesian coordinates on the plane. Note that this is also the small an-
gular radius, small area approximation to the sphere distribution (2.4). Global conformal
transformations on the sphere are generated by rotations plus special conformal transfor-
mations. In the stereographic plane, special conformal transformations around the origin
take a particularly simple form — they are simply the scalings xi → λxi and r → λr.
Therefore the distribution (2.4) is conformally invariant, since it is manifestly rotation in-
variant, and one can always choose the origin of the stereographic plane to coincide with
one of the fixed points of the special conformal transformation. As noted in [15], this
symmetry group is the set of Lorentz transformations on the point of nucleation of the
observation bubble.
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(a)

(b)

Figure 5. Numerical simulations of the model in d = 2. Only one disk type is shown. Left pane:
γ = .1, δ/R = .01. Right pane: γ = .5, δ/R = .01.

2.1 Fractals and percolation

Benoit Mandelbrot considered the distribution eq. 2.7 in [16], where he commented that
in d = 2 it approximates the distribution of craters on the moon. One can easily calculate
the Minkowski or “box-counting” fractal dimension of various sets of points defined by
this distribution. For example, the set of points not inside any bubble is a set of measure
zero (because the set of spheres with radii in any given logarithmic interval covers a finite
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fraction of the volume). To compute the fractal dimension of this set, one chooses boxes
of linear dimension ε, finds the minimum number Nb(ε) of boxes necessary to fully cover
the set, and then the dimension is defined as dF = limε→0(−∂ lnNb/∂ ln ε).

To compute this, note that the volume V (ε) which remains uncovered by spheres of
radius greater than ε is the volume V (ε+ dε) minus the volume covered by spheres of size
between ε and ε+ dε:

dV (ε) = −CdεddN (2.8)

where Cd is the volume of a unit d-sphere. The infinitesimal number of spheres is given by

dN = γ
dε

εd+1
V (ε) , (2.9)

so we have the differential equation

dV

V
= −γCd

dε

ε
(2.10)

Integrating this equation gives V (ε) = V0ε
γCd . The number of cubical boxes of size ε

required to cover this area is simply Nb(ε) = V (ε)ε−d, and therefore [16]

dF = d− γCd (2.11)

(see [20] for this calculation in the context of bubbles in 3 + 1 de Sitter). Similarly one
could compute the dimension of other sets, such as the set of points covered by exactly,
or at most, k spheres. These will be scale invariant fractal sets of measure zero as well.
The existence of these fractals is not surprising given the statistical scale invariance of the
distribution.

One may expect that these sets will undergo percolation transitions at special val-
ues of γ [16]. For example in D = 2, as one increases γ from zero there should be a
percolation critical point where the set transitions from connected along filaments to a
disconnected dust. This will occur at some dF ∼ 1. In d = 3 one expects two such tran-
sitions: from “ramified veils” to filaments at dF ∼ 2, and from filaments to dust at some
other dF ∼ 1 [16].

If in fact one can regard this as a type of percolation model, it has some novel properties.
The most striking is that as we will see, the theory seems to be conformally invariant for
all values of γ rather than just at the critical points — or at least one can define operators
that transform covariantly for all γ. Additionally, at least some correlation functions can
be computed analytically and exactly up to at least the 4-point function. It would be
interesting to see if quantities of primary interest for percolation (for example crossing
probabilities) could be extracted using the techniques developed here, but we leave this
question for future work.

Models of a somewhat similar type have been considered in the past under the name
“continuum fractal percolation,” where “continuum” refers to the lack of an underlying
lattice, and “fractal” to some self-similarity in the distribution of disks (or other shapes
— see e.g. [17]). Another model with some similarities is “Mandelbrot percolation,” in
which a square is subdivided into N2 smaller squares for some integer N , each of which is
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colored with a probability p, and then the remaining uncolored squares are subdivided and
the process repeats. Interestingly, while this model does have a percolation transition, it is
first order [18]—and hence not conformal even at the transition! Percolation in power-law
disk distributions was considered in the context of networks in [19].

3 Correlation functions

In this note we will concentrate on the correlation functions of a field with multiple vacua,
as pictured in figure 3. We label the minima by N , where N takes integer values. As
mentioned earlier, we assume that the vacua are identical, so there is a shift symmetry
N → N + 1. Starting from a given vacuum, the field can tunnel to the left or to the right;
we call these events instantons and anti-instantons.

When the forward lightcones of two spacelike separated nucleation points overlap,
additional physics is needed to determine the field profile in the overlap region. If the
critical bubble size is small, one can think of these overlap regions as collisions between
bubbles. It is then nontrivial and model dependent to solve for what happens in the
future of a collision. In our model where the vacua are degenerate, the critical bubble
is horizon size, so instead of collisions it is more accurate to think of bubbles nucleating
on top of existing domain walls. We make the simplest possible assumption about the
overlap regions: we assume the instantons satisfy superposition. In a region to the future
of the nucleation points of N+ instantons and N− anti-instantons, we assume the field is in
the minimum N = N+ −N−. These simple assumptions allow us to calculate correlation
functions explicitly, but it would clearly be interesting to perturb away from them by
allowing interactions between nucleation points and nontrivial dynamics in the overlap
regions. For small tunneling rate γ, the instantons are very dilute and one may expect that
the interactions are unimportant.

It is convenient to construct a partition function for the bubble distribution with
which to compute expectation values. For convenience we will work on the plane, using
the distribution (2.7). The partition function is

Z =
∞∑
n=0

γn

n!

n∏
k=1

(p+ + p−)n
∫ R

δ

drk
r3
k

∫
d2xk = exp

(
γ(p+ + p−)

∫ R

δ

dr

r3

∫
d2z

)
. (3.1)

Each term in the sum corresponds to a configuration of n disks, with the kth disk centered
at the point xk and with radius rk. The factor (p+ + p−) denotes the probabilities of the
two possible types of nucleations, left-moving and right-moving. Because all of the vacua
are identical by assumption, detailed balance demands p+ = p− = 1/2. To avoid infinities
the integral must be cut off in both small and large disk sizes, although as we will see,
well-defined correlation functions on the plane do not depend on the IR cutoff R. The
factor of γn is the appropriate weight for a configuration of n disks, given that γ ∼ e−Sinst

and that instanton interactions can be neglected. The partition function factorizes into
instanton and anti-instanton pieces,

Z = Z+Z− (3.2)
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with

Z+ = exp
(
γ+

∫ R

δ

dr

r3

∫
d2z

)
. (3.3)

Symmetry determines γ+ = γ− = γ/2.
Because the distribution is invariant under Mobius transformations, one expects cor-

relation functions of well-defined operators computed using the partition function 3.1 to
be Mobius covariant. The subtlety arises from the cutoffs — divergent correlators will
not transform simply under Mobius transformations, but as we will see one can define
well-behaved operators with correlation functons that transform simply.

The potential has a discrete shift symmetry N → N + 1. The natural operators
to consider have definite charge under the shift symmetry. The simplest such operators
are exponentials,

Vβ(z) ≡ eiβN(z) . (3.4)

We will see that these operators have positive definite weight at least under Mobius transfor-
mations, and their correlators are finite in the IR. Correlators of N itself can be determined
by differentiating the correlators of exponentials. As we will see this gives logarithms, as one
would expect if N were a massless field with dimension zero. Since the correlation functions
of such fields are not well-defined, this is another reason to consider exponentials.

3.1 The 1-point function

To compute the 1-point function 〈Vβ(z)〉 one simply needs to insert it into the partition
sum (3.1):

〈Vβ(z)〉 = Z−1

( ∞∑
n=0

γn+
n!

n∏
k=1

∫ R

δ

drk
r3
k

∫
d2xke

iβN+(z)

)
× (3.5)

×

( ∞∑
n=0

γn−
n!

n∏
k=1

∫ R

δ

drk
r3
k

∫
d2xke

−iβN−(z))

)

where the two terms correspond to the instantons and anti-instantons. The exponential
operator has a simple product form, and the contributions from the instantons and anti-
instantons are complex conjugates of each other, so

〈Vβ(z1)〉 = Z−1

∣∣∣∣exp
{
γ+

∫ R

δ

dr

r3

∫
d2x

[
eiβΘ(2r − |x− z1|) + Θ(−2r + |x− z1|)

]}∣∣∣∣2
(3.6)

Cancelling against Z−1 and collecting terms, this becomes

〈Vβ(z1)〉 = exp
[
−γ(1− cosβ)

∫ R

δ

dr

r3

∫
d2xΘ(2r − |x− z1|)

]
(3.7)

The integral over x gives the area A1(r) such that a disk of radius r covers z1 if its center
is contained in A1. This set of points is a disk of radius r centered at z. Then

〈Vβ(z1)〉 = exp
[
−γ(1− cosβ)

∫ R

δ

dr

r3
A1(r)

]
(3.8)
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The area is A1 = πr2, so the integral is

I1 ≡
1
π

∫ R

δ

dr

r3
A1(r) = ln

R

δ
(3.9)

Finally, the one point function of the exponential operator is

〈Vβ(z)〉 =
(
R

δ

)−πγ(1−cosβ)

=

{
1 if β =2πn, n ∈ Z
0 otherwise

}
. (3.10)

This type of “conservation of charge” condition is familiar from Liouville theory and free
scalar CFTs, but the periodicity in β (which is a consequence of the quantization of N)
is novel.

3.2 The 2-point function

One can compute the 2-point function by the same techniques. A similar analysis to the
one above gives

〈Vβ1(z1)Vβ2(z2)〉 = |〈exp [iβ1N(z1) + iβ2N(z2)]〉|2 (3.11)

= exp
{
−γ
∫
dr

r3

∫
d2x (1−cos [β1Θ(r−|x−z1|)+β2Θ(r−|x−z2|)])

}
.

This is equivalent to

〈Vβ1(z1)Vβ2(z2)〉 = exp
{
− γ

∫
dr

r3

[
(1− cosβ1)A0

1

+(1− cosβ2)A0
2 + (1− cos(β1 + β2))A0

12

]}
(3.12)

where we have defined the “exclusive area” A0
1 as the area of the region such that disks

centered in that region cover z1 but not z2. Equivalently, construct two disks of radius r,
one centered at z1 and the other centered at z2. Then A0

1 is the area covered only by the
disk centered at z1.

Similarly, we define the integral over these areas as

I0
1 (z1, z2) ≡ 1

π

∫
dr

r3
A0

1(r, z1, z2) . (3.13)

With this notation, the two point function is

〈Vβ1(z1)Vβ2(z2)〉 = exp
{
−πγ

[
(1− cosβ1)I0

1 + (1− cosβ2)I0
2 + (1− cos(β1 + β2))I0

12

]}
(3.14)

The integrals I0
ij... have a simple interpretation as spacetime volumes in de Sitter space:

I0
ijk is proportional to the spacetime volume available to nucleate bubbles which cover only

the points (zi, zj , zk).
To evaluate the integrals, we need to write the exclusive areas in terms of the simpler

inclusive areas. For the two-point function, we have

A0
1 = A1 −A12 (3.15)

A0
2 = A2 −A12 (3.16)

A0
12 = A12 (3.17)
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The same equations hold for the integrals of the areas,

I0
1 = I1 − I12 (3.18)

I0
2 = I2 − I12 (3.19)

I0
12 = I12 (3.20)

We need to compute I12, the integral of the area covered by both disks. Some simple
geometry yields

A12(r, z1, z2) = 2r2
(

cos−1(|z12|/2r)− (|z12|/2r)
√

1− (|z12|/2r)2
)
θ(2r − |z12|), (3.21)

where |z12| ≡ |z1−z2| is the distance between the centers of the disks. Integrating this gives

I12(r, z1, z2) =
1
π

∫ R

δ
A12 dr/r

3 = ln(R/|z12|)− 1/2 +O(1/R). (3.22)

Plugging this in gives

I0
1 = I0

2 = ln
|z12|
δ

+
1
2

(3.23)

I0
12 = ln

R

|z12|
− 1

2
(3.24)

Let us redefine the UV cutoff δ to eliminate the annoying constant factor so that

I0
1 = I0

2 = ln
|z12|
δ

(3.25)

Note that I0
1 and I0

2 are infrared finite, while I0
12 diverges as R→∞. This corresponds

to an infinite expected number of disks covering both points 1 and 2. Therefore, for β1 6= β2,
the exponent of eq. 3.14 goes to −∞ as the infrared cutoff R is taken to infinity. So the
two-point function eq. 3.11 is zero due to IR divergences. To cancel this divergence it is
necessary and sufficient to require that the coefficient of the double overlap region I0

12 is
zero; in other words one needs cos(β1 + β2) = 1, or β1 + β2 = 2πn (n an integer).

This condition is a kind of charge conservation condition: under the shift symmetry
N → N+1, the operator Vβ transforms as Vβ → exp(iβ)Vβ. So the correlators are nonzero
only when they are invariant under the shift symmetry. Because N takes integer values, the
operator eiβN(z) is equivalent to the operator ei(β+2π)N(z), so it is natural that the charge
conservation condition is defined mod 2π. We will see in a moment that the dimensions of
operators are also periodic functions of β.

Enforcing this condition we get

〈Vβ1(z1)Vβ2(z2)〉 =
(

δ

z1 − z2

)πγ (1− cosβ1)( δ

z̄1 − z̄2

)πγ (1− cosβ1)
(3.26)

when β1 + β2 = 2πn (else the correlator is zero). Defining ∆(β) = ∆̄(β) = π
2γ (1− cosβ),

this has the form of a two-point function for a conformal operator of dimension (∆, ∆̄).
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3.2.1 Correlation functions of N

At this point, we pause for a moment in our analysis of exponential operators to consider
quantities which may seem more basic: correlators of the field N itself. Because N → −N
is a symmetry, the 1-point function vanishes, 〈N(z)〉 = 0. The 2-point function can be
obtained by differentiating the 2-point function of exponentials,

〈N(z1)N(z2)〉 = − ∂

∂β1

∂

∂β2
〈Vβ1(z1)Vβ2(z2)〉 (3.27)

evaluated at β1 = β2 = 0. A convenient form of the correlator to differentiate is (3.14).
Differentiating and setting β1 = β2 = 0 gives

〈N(z1)N(z2)〉 = πγI0
12 = πγ

(
ln

R

|z12|
− 1

2

)
(3.28)

This is the correlation function of a dimension zero field. To put it in a more standard
form, the additive factor of 1/2 could be absorbed into the infrared cutoff and the prefactor
πγ could be absorbed into a field redefinition of N . The presence of the infrared divergence
means that these correlators are not really well-defined. This is not surprising: since the
theory has a symmetry N → N+1, N is not a physical quantity. However, the exponentials
we have been considering are physical and have well-defined correlators. Exactly the same
issues arise for a free massless scalar in two dimensions.

3.3 The 3-point function

To compute the 3-point function of exponentials 〈Vβ1(z1)Vβ2(z2)Vβ3(z3)〉 we will need to
evaluate the integrals of the overlap regions of three disks of equal size, each centered on a
point zi where the operators is inserted. The calculation proceeds along the same lines as
for the 2-point function; omitting some details one obtains

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)〉 = exp
{
−πγ

[
(1− cosβ1)I0

1 + (1− cosβ2)I0
2 + (1− cosβ3)I0

3

+(1− cos(β1 + β2))I0
12 + (1− cos(β1 + β3))I0

13

+(1− cos(β2 + β3))I0
23 + (1− cos(β1 + β2 + β3))I0

123

]}
.

Since the integral I0
123 is again logarithmically divergent at large r, a “charge cancel-

lation” condition is required to cancel the IR divergence that would otherwise send the
correlator to zero. Requiring the coefficient of this term be zero means β1 +β2 +β3 = 2πn.

When this condition is satisfied, the correlator simplifies to

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)〉 =

exp
{
−πγ

[
(1− cosβ1)(I0

1 + I0
23) + (1− cosβ2)(I0

2 + I0
13) + (1− cosβ3)(I0

3 + I0
12)
]}

The exclusive area integrals are given by, for example,

I0
1 = I1 − I12 − I13 + I123 (3.29)

I0
23 = I23 − I123 (3.30)
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The formula for the triple overlap I123 is somewhat complicated, but it cancels in the
3-point function, because the integrals appear in combinations such as

I0
1 + I0

23 = I1 − I12 − I13 + I23 (3.31)

Therefore the 3-point function simplifies to

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)〉 =

exp {−πγ [(1− cosβ1)(I1 − I12 − I13 + I23)]} × (cyclic permutations)

In terms of the weights ∆i = π
2γ(1− cosβi) the 3-point function can be written

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)〉 = |exp {−(∆1 + ∆2 −∆3)(I1 − I12)}|2 × (cyclic permutations)
(3.32)

The combination (I1 − I12) is exactly the same as in the 2-point function, so

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)〉 (3.33)

=

∣∣∣∣∣
(

δ

z1 − z2

)∆1+∆2−∆3
(

δ

z1 − z3

)∆1+∆3−∆2
(

δ

z2 − z3

)∆2+∆3−∆1

∣∣∣∣∣
2

This is the 3-point function required by conformal invariance for three operators of
weights ∆i, ∆̄i, with ∆i = ∆̄i. It is worth noting that scale invariance alone is not enough
to fix this form — scale invariance requires only that the total scaling dimension of any
term on the right-hand side be consistent with the total scaling dimension of the fields in
the correlator, but not this particular structure. However global conformal invariance does
require this form (in any number of dimensions), because there are no conformal invariants
that can be built from less than 4 points.

Starting from the Mobius invariance of the distribution eq. 2.7 one could presumably
prove that well-behaved correlators must be of this form. The statement is non-trivial
because of the issue of IR divergences; correlators that depend on the IR regulator will not
in general respect this form.

4 Four-point function

In this section we find the 4-point function and analyze its properties. By now the procedure
is familiar. The 4-point function is

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)Vβ4(z4)〉

= exp
{
− πγ

[∑
i

(1− cosβi)I0
i +

∑
i<j

(1− cos(βi + βj))I0
ij

+
∑
i<j<k

(1− cos(βi + βj + βk))I0
ijk +

(
1− cos

∑
i

βi

)
I0

1234

]} (4.1)

The charge cancellation condition works as before: I0
1234 is the only infrared divergent

quantity, so the correlator is zero unless∑
i

βi = 2πn (4.2)
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Using the charge cancellation condition, the 4-point function is

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)Vβ4(z4)〉 =∣∣∣∣ exp
{
−∆1(I0

1 + I0
234)−∆2(I0

2 + I0
341)

−∆3(I0
3 + I0

412)−∆4(I0
4 + I0

123)−
∑
i<j

∆ijI
0
ij

}∣∣∣∣2
(4.3)

where we have defined

∆ij ≡
π

2
γ(1− cos(βi + βj)) (4.4)

Note that due to the charge cancellation condition ∆12 = ∆34.
In the case of four points, the exclusive area integrals are given by

I0
1 = I1 − I12 − I13 − I14 + I123 + I124 + I134 − I1234 (4.5)

I0
12 = I12 − I123 − I124 + I1234 (4.6)

I0
123 = I123 − I1234 (4.7)

I0
1234 = I1234 (4.8)

Using these relations and massaging the expression, the 4-point function can be rewritten

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)Vβ4(z4)〉 =∣∣∣∣∣ exp

{
−
∑
i<j

(∆i + ∆j −∆ij)(I1 − Iij)

−

(∑
i

∆i −
1
2

∑
i<j

∆ij

)( ∑
i<j<k

Iijk − 2I1234 − 2I1

)}∣∣∣∣∣
2

(4.9)

The first sum has the form of a product over six 2-point functions, while the second term
contains a nontrivial function of the positions of the points. To be explicit,

〈Vβ1(z1)Vβ2(z2)Vβ3(z3)Vβ4(z4)〉 =∣∣∣∣∣∏
i<j

(
δ

zij

)∆i+∆j−∆ij

exp

{
−

(∑
i

∆i −
1
2

∑
i<j

∆ij

)( ∑
i<j<k

Iijk − 2I1234 − 2I1

)}∣∣∣∣∣
2

(4.10)

The interesting functional dependence on the location of the points is all contained by the
function f(z1, z2, z3, z4) =

∑
i<j<k Iijk − 2I1234 − 2I1.

It is possible to compute the 4-point function in full generality and show that it is
conformally invariant. However, since the distribution of bubbles is conformally invariant,
the 4-point function is guaranteed to be conformally invariant unless infrared divergences
arise. Therefore, we will assume conformal invariance and compute the 4-point function
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with the four points at

z1 = z (4.11)

z2 = 0 (4.12)

z3 = 1 (4.13)

z4 = ∞ (4.14)

With this assumption, the four-point function is an infinite constant times a nontrivial
function of z,

〈Vβ1(z)Vβ2(0)Vβ3(1)Vβ4(∞)〉 (4.15)

= C

∣∣∣∣∣∣z−(∆1+∆2−∆12)(1− z)−(∆1+∆3−∆13) exp

−
∑

i

∆i −
1
2

∑
i<j

∆ij

 I123


∣∣∣∣∣∣
2

It now remains to evaluate the integral I123.

4.1 Evaluation of the triple overlap integral

We need to evaluate
I123 ≡

1
π

∫
dr

r3
A123 (4.16)

where A123 is the area contained within the triple overlap of three disks of radius r centered
at the points z1, z2, and z3.

To evaluate this we will need a formula for the area of triple overlap of three circles.
In some cases this reduces to a double overlap, but in situations where the triple overlap
is of triangular type (e.g. a region bounded by the arcs of three distinct circles) the area
is [22]:

A123 =
1
2
(
A12 +A13 +A23 − πr2

)
+AT , (4.17)

where AT is the area of the triangle with vertices at the three points. We will do the
computation for triangles for which the triple overlap area is always given by this formula
for any disk size r, which amounts to assuming that the triangle is sufficiently close to
equilateral, with none of the angles exceeding 90o. However, our final formula will be valid
for any arrangement of three points.

The triple overlap integral begins to be nonzero at the smallest value of r such that a
disk can cover all three points. This value is called the circumradius Rc. By subtracting
the area inside a wedge of the circle from a triagular area (see figure 6), we find

1
2
A23 = r2(π/2− θ)− r2 sin θ cos θ (4.18)

where θ is the angle shown in the figure. The integral of A23 is infrared divergent, but the
quantity A23 − πr2 is infrared safe,

1
2

(A23 − πr2) = −(θ + sin θ cos θ)r2 (4.19)
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2 3

r

θ1

θ

1

Figure 6. It is convenient to change variables in the integration, using θ shown in the figure instead
of r as the integration variable.

so we focus on it. We need to integrate the triple overlap from the lower limit Rc where it
is first nonzero. So the A23 piece of the integral is given by

1
2

∫ R

Rc

dr

r3
(A23 − πr2) = −

∫ R

Rc

dr

r
[θ + sin θ cos θ] (4.20)

and we can now freely take R→∞ because the integral is finite in the infrared. The angle
θ is related to r by

sin θ =
d23

2r
(4.21)

Also, as shown in figure 7, the lower limit r = Rc corresponds to an upper limit on θ,
θ = θ1, where θ1 is the angle of the triangle with its vertex at point 1. The upper limit
r =∞ corresponds to θ = 0.

Making the change of variables, the integral is

1
2

∫ ∞
Rc

dr

r3
(A23 − πr2) = −

∫ θ1

0
dθ
[
θ cot θ + cos2 θ

]
(4.22)

We can now write the full integral.∫ R

Rc

dr

r3
A123 =

∫ R

Rc

dr

r3

[
1
2
(
(A12 − πr2) + (A13 − πr2) + (A23 − πr2)

)
+ πr2 +AT

]
(4.23)

Now the only infrared divergent term is the trivial πr2; for the rest of the terms we take
R→∞ to get ∫ R

Rc

dr

r3
A123 = π log

R

Rc
+
AT
2R2

c

−
∑
i

∫ θi

0
(θ cot θ + cos2 θ)dθ (4.24)
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1

2 3

θ1

1θRc

Figure 7. The smallest radius disk which can cover all three points is defined by r = Rc. The
figure shows that the lower limit if integration corresponds to θ = θ1.

where the sum is over the three angles of the triangle.
The integral gives∫ θi

0
(θ cot θ+ cos2 θ)dθ = θi ln(sin θi) + θi

(
1
2

+ ln 2
)

+
1
4

sin(2θi) +
1
2
=
[
Li2(e2iθi)

]
(4.25)

where Li2 is the dilogarithm function,

Li2(z) ≡
∞∑
n=1

zn

n2
(4.26)

We would like to write everything in terms of the angles and lengths of the sides. By
examining figure 7, we find

2Rc =
d23

sin θ1
=

d13

sin θ2
=

d12

sin θ3
(4.27)

AT = R2
c

∑
i

sin θi cos θi (4.28)

We can now rewrite the integral as

πI123 =
π

3
ln
(

8R3 sin θ1 sin θ2 sin θ3

d12d13d23

)
+

1
2

∑
i

sin θi cos θi

−
∑
i

(
θi ln(sin θi) + θi

(
1
2

+ ln 2
)

+
1
4

sin(2θi) +
1
2
=
[
Li2(e2iθi)

]) (4.29)
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In combining the terms, some simplifications occur because
∑
θi = π. A nice symmetric

way to write the answer is

πI123 = −π
2

+
π

3
ln

R3

|z12z13z23|
−
∑
i

((
θi −

π

3

)
ln(sin θi) +

1
2
=
[
Li2(e2iθi)

])
(4.30)

The sum is over all three angles of the triangle formed by the three points, and each angle
is defined in the conventional way so that 0 ≤ θi ≤ π. Although our derivation is only
valid for triangles which are sufficiently close to equilateral, the answer written in this way
is valid for any arrangement of the three points.

The answer can also be written in the pleasing form

πI123 = −π
2

+ π lnR− θ1 ln d23 − θ2 ln d31 − θ3 ln d12 −
1
2

∑
i

=
[
Li2(e2iθi)

]
(4.31)

It is particularly simple when the three points are on a line. If point 2 is between points 1
and 3, then θ1 = θ3 = 0 and θ2 = π, so that

I123 = −1/2 + lnR− ln d31 (collinear) (4.32)

because all of the dilogarithms vanish.
Having written the answer in terms of the angles, we want to write it as a function of

z for our special choice of points,

z1 = z

z2 = 0

z3 = 1

(4.33)

The angles should satisfy 0 ≤ θi ≤ π. For =(z) > 0 we have

e2iθ1 =
z̄(1− z)
z(1− z̄)

(4.34)

e2iθ2 =
z

z̄
(4.35)

e2iθ3 =
1− z̄
1− z

(4.36)

The above is not valid for =(z) < 0, but it is clear that the correct answer should be
invariant under z → z̄, so we will just work it out for z in the upper half plane and
determine the value in the lower half plane by symmetry.

We rewrite the answer piece by piece in terms of z. To write the dilogarithm part of the
answer in terms of z, it is convenient to rewrite the answer in terms of the Bloch-Wigner
function D2. The relation is

D2(z) = =[Li2(z)] + arg(1− z) ln |z| (4.37)
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so that D2(eiθ) = =[Li2(eiθ)]. The combination which appears in the answer is

1
2

∑
i

D2

(
e2iθi

)
=

1
2

{
D2

(z
z̄

)
+ D2

(
z̄(1− z)
z(1− z̄)

)
+ D2

(
1− z̄
1− z

)}
= D2(z) (4.38)

where we have used an identity of the Bloch-Wigner function to get the last equality
(see [24] section 7.2).

For the part not involving dilogarithms, we need to solve for θi in terms of z. Again
for z in the upper half plane, we can invert (4.36) to get

iθ2 = ln
(
z

|z|

)
−iθ3 = ln

(
1− z
|1− z|

)
(4.39)

subject to the usual convention that the branch cut for the logarithm is taken to be on
the negative real axis. θ1 is not needed because in the answer it multiplies ln d23, which is
zero. Plugging these in and simplifying,

− θ1 ln d23 − θ2 ln d31 − θ3 ln d12 = −= [ln z ln(1− z̄)] (4.40)

So the answer as a function of z is

πI123 = −π
2

+ π lnR−=[ln z ln(1− z̄)]−D2(z) for =(z) > 0 (4.41)

Now our algebra has been done under the assumption that z is in the upper half plane,
but the answer must be symmetric under z → z̄. The answer as it stands is a constant
term plus two functions which are odd under z → z̄. Therefore, the correct answer has an
additional factor of the sign of the imaginary part of z,

πI123 = −π
2

+ π lnR− sgn(=(z)) {=[ln z ln(1− z̄)] + D2(z)} (4.42)

4.2 Properties of the 4-point function

Plugging this in, we have the 4-point function

〈Vβ1(z)Vβ2(0)Vβ3(1)Vβ4(∞)〉 = C
∣∣z−∆1−∆2+∆12(1− z)−∆1−∆3+∆13

∣∣2 × (4.43)

× exp


 2
π

∑
i

∆i −
1
π

∑
i<j

∆ij

 sgn(=(z)) {=[ln z ln(1− z̄)] + D2(z)}


By conformal invariance, aside from simple prefactors which depend on the conformal
weights of the fields, the 4-point function can depend only on the cross ratio. For our
choice of points the cross ratio is just z:

z =
(z1 − z2)(z4 − z3)
(z3 − z2)(z4 − z1)

. (4.44)
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The 4-point function in a conformal field theory should be crossing-symmetric — it
should be invariant under interchanging the points where the operators are inserted. In-
terchanging the points corresponds to the following group of transformations on z:

z → 1− 1
z
→ 1

1− z
→ 1

z
→ 1− z → −z

1− z
(4.45)

The last three are odd permutations of the four points; the rest are even [25]. The Bloch-
Wigner function D2(z) has the property that it changes sign under odd permutations and
is invariant under even permutations [25]. Since the sgn function changes sign only under
odd permutations, sgn(=(z))D2(z) is invariant under all permutations.

The other nontrivial factor in the 4-point function, (sgn(=(z))=[ln z ln(1 − z)]), is
slightly more complicated, but one can check that under permutations it transforms in the
correct way to contribute the right factors. To take a nontrivial example, under z → 1/z
this function transforms as

sgn(=(z−1))=[ln z−1 ln(1− z̄−1)] = sgn(=(z))=[ln z ln(1− z̄)]− π ln |z|. (4.46)

One can use this to check that the 4-point function eq. 4.43 satisfies

〈Vβ1(z)Vβ2(0)Vβ3(1)Vβ4(∞)〉 = z−2∆1 z̄−2∆1〈Vβ1(1/z)Vβ4(0)Vβ3(1)Vβ2(∞)〉, (4.47)

which is the correct behavior [21].
The four-point function simplifies when all 4 points are on a line, or more generally a

circle. Using the simple form (4.32) for the triple overlap integral, for z real and negative
we have

〈Vβ1(z)Vβ2(0)Vβ3(1)Vβ4(∞)〉 = C
∣∣z−∆1−∆2+∆12(1− z)−∆1−∆3+∆13

∣∣2 ×
× exp


2
∑
i

∆i −
∑
i<j

∆ij

 ln |1− z|

 (z real and negative) . (4.48)

Therefore for all 4 points on a circle, the 4-point function is simply a product of power
laws; the powers which appear depend on the order of the points.

However, there is a problem. Without the sgn factor, the functions in the exponent in
eq. 4.43 would be odd under z → z̄. Furthermore, they are real analytic functions away
from lines of discontinuity running along the real axis from −∞ to 0 and from 1 to +∞. So
before multiplying by the sign function, the exponent is a real analytic function in a finite
region around z = 1/2. Therefore after including the sign the 4-point function is not real
analytic as we drag z across the real axis near z = 1/2, even though z is separated from
the other points at 0 and 1 by a finite distance. In a conventional field theory, correlation
functions should be analytic except when two points approach each other.

The nonanalyticity of the 4-point function indicates that the system we have defined
does not correspond to a full-fledged conformal field theory. This is not too surprising,
because we have made a number of approximations in treating the physics of bubble nu-
cleation; one may still expect that our system can be obtained as the limit of a genuine
conformal field theory. Less optimistically, it is also possible that the problem is not our
approximations, but rather that correlators based on the number of disks covering a point
are inherently not good local operators. We will discuss this further in the conclusions.
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5 Central charge

Conformal field theories on curved spaces have a conformal anomaly. Specifically, in 2D
CFTs T aa = − c

12R̂, where R̂ is the scalar curvature of the 2D space. Since the trace of the
stress tensor is related to the variation of the action with respect to the conformal factor
in the metric, one can compute c by taking the derivative of lnZ with respect to the log
of the curvature. On a sphere of radius R,

Z(R) = Rc/3Z0, (5.1)

where Z0 is the partition function on a sphere of unit radius [23].
Given the results of the previous section, it is at best unlikely that the theory as we

have defined it is a full conformal field theory. Nevertheless we will proceed, as we can
easily compute Z on a sphere. The partition function is

Z =
∞∑
n=1

γn

n!

∫
dΩ2

(∫ π−ε

ε

dψ

sin3 ψ
− Λ

)
, (5.2)

where ε is a cutoff on disk angular size and Λ is a (cosmological) constant added as a local
counterterm to cancel the leading UV divergence from small ε (as a constant multiplicative
factor in Z it cancels out of all the correlators computed earlier). Computing the integral
and restoring the dimensions gives

lnZ = 4πγ
(
R2

ε2
+ ln

R

ε
+ ln 2− 1

6
− ΛR2 +O(ε2)

)
. (5.3)

Setting the counterterm Λ = 1/ε2 cancels the quadratic UV divergence, but the log is an
anomaly that cannot be cancelled with any local counterterm. This is precisely what one
expects for a 2D CFT on a sphere with central charge

c = 12πγ . (5.4)

For c < 1, unitarity implies that c must take a discrete set of values (the minimal
models). Therefore if this calculation is taken seriously it indicates that our model cannot
be unitary at small γ. However it is worth mentioning that we have included neither
perturbative fluctuations of the field nor of the geometry. One expects graviton fluctuations
to contribute a term of order (MP /H)d−2, and so it is possible that the term we have
computed is only one of several contributions to the central charge of a putative complete
theory. At large γ, it is reasonable to expect that the instanton fluctuations are the
dominant contribution, and indeed in that limit the theory becomes free. It would be
interesting to compare this limit to the analogue in AdS space, where one would take
GN → 0 with the AdS radius held fixed so that c→∞.

5.1 CFT on a fractal

In the string theory landscape there are so-called “terminal vacua”: minima with either
zero or negative cosmological constant. A region which tunnels to one of these minima
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has at most a finite probability of nucleating any more bubbles before infinite time (for a
zero CC bubble) or a big crunch (for a negative CC bubble). How best to deal with these
regions is unclear, but the proposal of [13] is to excise them and attempt to define a CFT on
the remaining space, perhaps including lower dimensional defect CFTs on the boundaries.

A simple toy model for terminal vacua in our 2D CFT is to assume there is some rate
γ to produce “dead” disks. Following the suggestion of [13] then corresponds to computing
correlators in the regions outside these dead disks. Since the region covered by zero disks
of any type is a fractal set of measure zero, these correlators will “live” on a fractal set.

One immediate problem is that when γ is large this set is not just measure zero, but
empty (recall that dF = d − γΩd, and when dF ≤ 0 the set is empty). One can consider
the case of γ < 1 and continue, but it is clear that the resulting theory will have a very
different structure than what we have considered so far.

Since the set is by definition N(z) = 0 one cannot compute correlators of the disk
number operator in the way we have been proceeding. There are two obvious approaches
one could take to this. One is to compute the probability that some set of points zi in the
full space are all in the set, or various conditional probabilities (such as the odds that if one
point is in the set, the others are as well). Computing these probabilities is not difficult
using the techniques we have already developed, and the results depend on the distances
between the points. However proceeding in this manner we have not succeeded in defining
a set of probabilities that are independent of the IR cutoff. The problem in a nutshell is
that the number of disks which covers some but not all of a certain set of points is IR finite
when integrated against the distribution, but on the other hand the number of disks that
would cover all of the points is infrared divergent.

Another approach is to consider more types of disks: a “dead” type which defines the
fractal, and then one or more other “live” types. One could then try to compute correlators
of the number operator for “live” disks within the set of points covered by zero “dead”
disks. However this analysis requires taking into account interactions between the different
types of bubbles, something which we will not consider in this note.

6 Generalization to arbitrary dimension

The definition of the theory can be easily generalized to arbitrary dimensions. The partition
function in d dimensions is

Z = Z+Z− (6.1)

with

Z+ = exp
(
γ+

∫ R

δ

dr

rd+1

∫
ddx

)
(6.2)

We will show that the two and three point functions generalize in a simple way. To make
the discussion here easier to follow, we include some formulas and discussion which overlap
with the earlier sections of the paper.
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The general N-point function is

〈eiβ1N(z1)eiβ2N(z2) . . . eiβnN(zn)〉 = exp
(
−2Cdγ

[ n∑
i=1

(1−cosβi)I0
i +
∑
i<j

(1−cos(βi+βj))I0
ij

+
∑
i<j<k

(1−cos(βi+βj+βk))I0
ijk + . . .

])
(6.3)

where now zi is a point in d-dimensional space and Cd is the volume of a unit d-sphere. As
before, define the integral

I0
1 ≡

1
Cd

∫
dr

rd+1
A0

1(r, zi) . (6.4)

The two-point function when the charge conservation condition is satisfied is

〈eiβN(z1)e−iβN(z2)〉 = exp(−Cdγ(1− cosβ)(I0
1 + I0

2 )) (6.5)

Now I0
1 = I0

2 = I1 − I12 as before. The 2-point function is then

〈eiβN1e−iβN2〉 = exp(−2Cdγ(1− cosβ)(I1 − I12)) (6.6)

The integral is given by

I1 − I12 =
1
Cd

∫ R

δ

dr

rd+1
A1(r)− 1

Cd

∫ R

d12/2

dr

rd+1
A12(r, d12) (6.7)

It is helpful to rewrite this as

I1 − I12 =
1
Cd

∫ d12
2

δ

dr

rd+1
A1(r)− 1

Cd

∫ R

d12
2

dr

rd+1
[A1(r)−A12(r, d12)] (6.8)

The first term can be integrated immediately using A1(r) = Cdr
d to get

I1 − I12 = ln
(
d12

2δ

)
− 1
Cd

∫ R

d12
2

dr

rd+1
[A1(r)−A12(r, d12)] (6.9)

The remaining integral can be evaluated explicitly, but the crucial information can be
extracted more cheaply. The first term, the integral of A1, diverges logarithmically at
large r. However, the second term cancels this divergence, because the double overlap
region A12 asymptotically has the same area as a single disk,

A12 → Cdr
d as r →∞ . (6.10)

Therefore, the integral is infrared finite, and we can take R→∞, so that the integral is

1
Cd

∫ ∞
d12
2

dr

rd+1
[A1(r)−A12(r, d12)] (6.11)

This formula depends only on the dimensionful quantity d12, but dimensional analysis
shows that the answer must be dimensionless. Therefore it is a constant independent of
the distance d12. So finally

I1 − I12 = ln
(
d12

δ

)
−#d (6.12)
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where #d is a dimension-dependent constant.
Plugging this in, we have

〈eiβN(z1)e−iβN(z2)〉 = e−2Cdγ(1−cosβ)#d

(
δ

|z12|

)2Cdγ(1−cosβ)

(6.13)

The prefactor can be absorbed into a redefinition of the ultraviolet cutoff δ. The dimension
of the vertex operator eiβN is

∆ = ∆̄ =
Cd
2
γ(1− cosβ) (6.14)

Having found the dimensions we can rewrite the general n-point function,

〈eiβ1N(z1)eiβ2N(z2) . . . eiβnN(zn)〉 =

∣∣∣∣∣∣exp

−
n∑
i=1

∆iI
0
i −

∑
i<j

∆ijI
0
ij −

∑
i<j<k

∆ijkI
0
ijk − . . .


∣∣∣∣∣∣
2

(6.15)
Now to evaluate the 3-point function explicitly. In general, we have

〈eiβ1N(z1)eiβ2N(z2)eiβ3N(z3)〉 (6.16)

=
∣∣exp

{
−∆1I

0
1 −∆2I

0
2 −∆3I

0
3 −∆12I

0
12 −∆13I

0
13 −∆23I

0
23 −∆123I

0
123]
}∣∣2

The correlation function is zero unless ∆123 = 0 because I0
123 is infrared divergent. ∆123 = 0

when the charge conservation condition is satisfied, β1 + β2 + β3 = 2πn with n an integer.
Using the charge conservation condition, we have relations like ∆12 = ∆3. Also, recall that
the exclusive volumes are given by

I0
1 = I1 − I12 − I13 − I23 + I123 (6.17)

I0
12 = I12 − I123 (6.18)

so the 3-point function becomes

|exp {−∆1(I1 − I12 − I13 + I23)−∆2(I2 − I12 − I23 + I13)−∆3(I3 − I32 − I13 + I12)])}|2

(6.19)
Note that the triple overlap region I123 does not appear. Collecting terms, we have

|exp {−(∆1+∆2−∆3)(I1−I12)−(∆1+∆3−∆2)(I1−I13)−(∆2+∆3−∆1)(I2−I23)}|2

(6.20)
where we have used I1 = I2 = I3. But this factorizes into 2-point functions! This is
precisely the form the 3-point function must take due to conformal invariance. Explicitly,
it is

〈eiβ1N(z1)eiβ2N(z2)eiβ3N(z3)〉 =
(

δ2

z12z̄12

)∆1+∆2−∆3
(

δ2

z13z̄13

)∆1+∆3−∆2
(

δ2

z23z̄23

)∆2+∆3−∆1

(6.21)
where we have absorbed the same constant factor into the definition δ as in the
2-point function.
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Now for the 4-point function. Performing a similar analysis as for the 3-point function,
we find

〈eiβ1N1eiβ2N2eiβ3N3eiβ4N4〉 =

∣∣∣∣∣∣exp

−∑
i<j

(∆i + ∆j −∆ij)(I1 − Iij)


∣∣∣∣∣∣
2

× (6.22)

|exp {−C∆(I123 + I124 + I134 + I234 − 2I1234 − 2I1)}|2

with the definition

C∆ = ∆1 + ∆2 + ∆3 + ∆4 −∆12 −∆13 −∆14 . (6.23)

The first factor has the form of factorized two point functions, so we can rewrite this as

〈eiβ1N1eiβ2N2eiβ3N3eiβ4N4〉 =
∏
i<j

(
δ2

|zij |2

)∆i+∆j−∆ij

× (6.24)

|exp {−C∆(I123 + I124 + I134 + I234 − 2I1234 − 2I1)}|2

So the first part of the 4-point function consists of simple power laws. The last line has
all of the interesting information in it, and involves the triple and quadruple overlaps.
This term is IR finite on its own, but it does depend on the UV cutoff through I1; this
dependence is trivial.

Computing the 4-point function explicitly is a nontrivial task which we have only
accomplished in d = 2 so far.

6.1 Free field limit

Our correlators have a free-field limit when the tunneling rate becomes large. In taking
γ → ∞, the expectation value of N will become very large. Operators which are well-
defined in this limit should have βi → 0. More preciesly, defining

β = α

√
2
πγ

(6.25)

we want to take the limit γ →∞ with α fixed.
To see this that the correlators factorize in this limit, start from the formula for an

n-point correlator in general dimension, eq. 6.15:

〈eiβ1N(z1)eiβ2N(z2) . . . eiβnN(zn)〉 =

∣∣∣∣∣∣exp

−
n∑
i=1

∆iI
0
i −

∑
i<j

∆ijI
0
ij −

∑
i<j<k

∆ijkI
0
ijk − . . .


∣∣∣∣∣∣
2

.

(6.26)
The exclusive integrated areas I0

ijk... satisfy the obvious generalizations of eqs. 4.5:

I0
i1i2...ik

=
n−k∑
l=0

(−1)l

l!

∑
j1,j2,...,jl

Ii1i2...ikj1...jl (6.27)
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where the j indices are summed from 1 to n and the factor of l! corrects for overcounting.
In this expression we have defined Iijk... = 0 if any i, j, k . . . are equal. Then the exponent
in eq. 6.26 can be written

n∑
k=1

∆i1...ik

k!

n∑
l=0

(−1)l

l!

∑
j1,j2,...,jl

Ii1i2...ikj1...jl (6.28)

where we have also defined all areas with m indices Ii1i2...im = 0 if m > n.
To continue, we would like to evaluate the coefficient of the areas Ii1i2...ilj1...jm−l

with
m indices, which is:

m−1∑
l=0

(−1)l

l!(m− l)!
∆i1...im−l

∑
j1,j2,...,jl

Ii1i2...im−lj1...jl . (6.29)

In the limit βi → 0, we have

∆i1...ik = πγ(1− cos(βi1 + . . .+ βik)) = (αi1 + . . .+ αik)2 +O(α4/γ). (6.30)

Since Iijk... is completely symmetric,

∆i1...im−l
Ii1i2...im−lj1...jl =

(
(m− l)α2

i1 + (m− l)(m− l − 1)αi1αi2
)
Ii1i2...im−lj1...jl . (6.31)

Therefore eq. (6.29) is equal to

n∑
i1,...,im=1

Ii1...im

m−1∑
l=0

(−1)l

l!

(
α2
i1

(m− l − 1)!
+

αi1αi2
(m− l − 2)!

)

=
n∑

i1,...,im=1

Ii1...im
(
α2
I1δm,1 + αi1αi2δm,2

)
. (6.32)

So only the 1- and 2-disk overlap areas contribute! Therefore the exponent in eq. 6.26
becomes simply

− α2
i Ii − αiαjIij . (6.33)

Recalling that Ii = ln(R/δ) and Iij = ln(R/|zij |)(1 − δij), and using
∑

i α
2
i =∑

ij (αiαj − αiαj(1− δij)), we get

〈eiβ1N(z1)eiβ2N(z2) . . . eiβnN(zn)〉 =

∣∣∣∣∣∣exp

−∑
i,j

αiαj

(
ln
R

δ
+ ln

δ

|zij |
(1− δij)

)
∣∣∣∣∣∣
2

. (6.34)

As usual this is IR divergent unless we impose conservation of charge, which here is simply∑
i αi =

∑
i,j αiαj = 0. Then, recalling that βN(z) =

√
2αφ(z)

〈ei
√

2α1φ(z1)ei
√

2α2φ(z2) . . . ei
√

2αnφ(zn)〉 =
∏
i<j

∣∣∣∣zi − zjδ

∣∣∣∣4αiαj

. (6.35)

This is the general form of a correlation function of vertex operators ei
√

2αφ(z) of a free
massless field in D = 2 (see e.g. [21], p. 296). In higher dimensions a non-interacting
massless scalar with non-canonical kinetic term φ�d/2φ could produce such correlators.
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7 Conclusions

Starting from eternal de Sitter space we have successfully defined a model with correlation
functions that are conformally covariant and transform with positive weight. However
because of the lack of analyticity in the 4-point function, the model does not appear to be
a healthy conformal field theory (except perhaps in the non-interacting γ →∞ limit).

One possibility is that the theory we have defined here is the limit of some good CFT
in which certain effects have been ignored. Such limits can result in non-analyticities in
correlation functions (for example, one can get logs from power laws by expanding around a
limit where the dimensions of some operators go to zero). Adding weight to this possibility
is that in defining the simplest possible non-trivial model, we indeed have ignored many
potentially important effects:

• We have ignored perturbative fluctuations of the field around its minima, and in-
cluded only the instantons.

• We have ignored perturbative corrections to the instantons themselves, which for
example include fluctuations away from spherical shape.

• We have ignored interactions between the instantons other than their collisions, and
we have treated collisions and overlaps in a simplistic manner.

• We have used a semi-classical approximation that ignores quantum interference be-
tween different configurations in the ensemble of bubbles.

• We have ignored gravitational fluctuations in the bulk, as well as fluctuations in the
geometry of the boundary.

• The bulk theory we considered is a single scalar field in de Sitter space. Even coupled
to gravity, such a model in anti-de Sitter space probably does not define a consistent
CFT — one presumably needs the infinite number of modes of string theory, or at
least one expects some very restrictive conditions on the bulk degrees of freedom
necessary to define a good dual. Perhaps similar restrictions apply here.

On the other hand, it is possible that the operators we have defined are not good local
operators in a CFT. The nonanalyticity of the 4-point function could be seen as a symptom
that the number of disks covering a point is not a good local field.1

If the more optimistic interpretation is correct, the model presented here is only a
potentially interesting first step on the path to a full theory of inflation or de Sitter space.
Nevertheless, we feel the basic structure may be correct, and indeed many of the effects
mentioned above could be included as perturbations around our limit. In addition, the
model may have interested applications to condensed matter systems or as an example of
a new class of conformally invariant theories. We hope to investigate some of these issues
further in the future.

1This was emphasized to us by a referee.
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